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Degeneracy and totalities
Doubly-degenerate tricategories “are” [CG]

braided monoidal categories
but the totalities are more difficult.

4-category
of 3-categories

2-category of braided
monoidal categories

?

• LHS has the wrong dimensions for comparison.
• LHS maps are too weak for degenerate versions:

distinguished invertible elements arise.
• We use iterated icons to fix both issues.
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of 3-categories

2-category of braided
monoidal categories

We can now take the full sub-2-category of doubly-degenerate
3-categories.
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Icons
“Identity Component Oplax Natural” [Lack]

Idea: make a convenient 2-category of bicategories

• Bicategories naturally form a tricategory that
doesn’t truncate to a 2-category.

• We make a 2-category by changing the 2-cells.
An icon between morphisms of
bicategories exists only when
F and G agree on 0-cells.
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• Components are 2-cells only, so compose strictly.
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Eckmann–Hilton and braiding

In a doubly-degenerate tricategory we get a braiding from a
weak Eckmann–Hilton argument.
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• This depends on having only one 0-cell and 1-cell.
• For doubly-degenerate bicategories this is strict,

producing commutative monoids.
• If 1-cell units are weak the argument is more

complicated. [JS]
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Flavours of semi-strictness
Weak interchange [GPS]

• Every tricategory is equivalent to a Gray-category.
• Idea: everything is strict except interchange.

Weak horizontal units [JK]

• Given any braided monoidal category B there is a
monoidal 2-category X with weak unit I such that
X ( I , I ) is braided monoidal equivalent to B.

Weak vertical composition [CC]

• Any braided monoidal category B arises from a
doubly-degenerate tricategory with everything strict
except vertical composition.



Flavours of semi-strictness
Weak interchange [GPS]

• Every tricategory is equivalent to a Gray-category.
• Idea: everything is strict except interchange.

Weak horizontal units [JK]

• Given any braided monoidal category B there is a
monoidal 2-category X with weak unit I such that
X ( I , I ) is braided monoidal equivalent to B.

Weak vertical composition [CC]

• Any braided monoidal category B arises from a
doubly-degenerate tricategory with everything strict
except vertical composition.

Bicats-categories

Idea: tricategories with
only vertical composition weak

• Bicats is the category of bicategories and strict
functors, with cartesian monoidal structure.

Then a category enriched in Bicats has:
strict composition
functors strict interchange

strict enrichment strict horizontal
composition

weak composition
in hom bicategories

weak vertical
composition

We make an iconic 2-category totality of these.



Comparing totalities
Iconic totalities, Distributive laws, Weak maps



Iconic totality construction

Idea: make an iconic 2-category of Bicats-categories as strict
algebras for a 2-monad on Cat-Gph-Gph

Cat-Gph-Gph is a 2-category with

• 0-cells: 3-globular sets where the 2- and 3-cells
form a category

• 1-cells: morphisms of such
• 2-cells: “ico-iconic”, where the source and target

morphisms must agree on 0- and 1-cells

We define strict 2-monads on Cat-Gph-Gph:
• H for (strict) horizontal composition
• V for (weak) vertical composition

and a 2-distributive law VH HV with isomorphism
of 2-categories

HV -Alg ∼= Bicats-Cats

• This deals with strict maps only.
• This automatically constructs ico-iconic 2-cells.
• We provide greater generality via operad actions,

with a view to future work.
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Weak maps via distributive laws

Idea: given a distributive law of 2-monads ST
λ

TS
we study the 2-category TS-Algw via S and T
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Weak maps unravelled
We construct the desired 2-category totality

Bicats-Cat := HV -Algw

• We restrict to doubly-degenerate Bicats-categories.
• Maps have iconic constraints so are appropriately

semi-strict for the doubly-degenerate case.

Doubly-degenerate HV -algebras
H-action strict horizontal tensor a b
V -action weak vertical tensor a

b
interaction strict interchange

Weak maps of doubly-degenerate HV -algebras
weak H-map Fa Fb

h
F (a b)

weak V -map Fa
Fb

v
F

a
b



interaction

Fa Fb
Fc Fd

F (a b)
F (c d)

F
a
c

 F
b
d

 F
a b
c d



h
h

h

v v v

• v can always be used to reconstruct h
• V -transformation implies H-transformation
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Comparison with braided monoidal categories
We construct a 2-functor

ddBicats-Cat U BrMonCat

• On 0-cells: use vertical tensor product (V -action),
construct braiding by weak Eckmann–Hilton.

• On 1-cells: use weak V -map structure,
interaction axiom gives braid axiom.

• On 2-cells: use V -transformation structure.

Biessentially surjective on 0-cells
• Previous work.

[CC]

Locally surjective on 1-cells

• Reconstruct h from v .
Fa Fb F(a b)

Fa
Fb F.

a
b



h

v

α ∼ Fα∼

half an
Eckmann–Hilton

argument

• Interaction axiom follows from braid axiom.

Locally full and faithful on 2-cells

• A transformation is vertically monoidal if and only if it is
vertically and horizontally monoidal.



ddBicats-Cat

BrMonCat

doubly-degenerate tricategories
with only vertical composition weak

0-cells: doubly-degenerate Bicats-categories
1-cells: weak maps
2-cells: icon-like transformations

0-cells: braided weak monoidal categories
1-cells: braided weak monoidal functors
2-cells: monoidal transformations

U
Theorem
U is a pointwise biequivalence
• biessentially surjective on 0-cells
• locally [essentially] surjective on

1-cells
• locally full and faithful on 2-cells

biadjoint
biequivalenceexists

Corollary
Biadjoint biequivalence
follows from U being a
pointwise biequivalence

and [Gurski]



Future and related work

• An analogous analysis for doubly-degenerate Trimble
tricategories. These are weakened by operad actions; in
the present work we express bicategories via operad
actions to lay some groundwork for the generalisation.

• Generalisation to (n − 1)-degenerate n-categories;
these should all be categories with extra structure,
with 2-category totalities.

• Constructing a pseudo-inverse for U , and deducing a
free 2-functor from categories via the free braided
monoidal category 2-functor.

• Relation to Cheng–Garner constructing operads for
k-degenerate (n + k)-categories.
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