A Higher-Dimensional Eckmann–Hilton Argument

Eugenia Cheng, Alex Corner

School of the Art Institute Chicago, Sheffield Hallam University

Plan

Aim: Describe the 3-fold generalisation of the Eckmann–Hilton argument for 3-degenerate 4-categories...

Plan

Aim: Describe the 3-fold generalisation of the Eckmann–Hilton argument for 3-degenerate 4-categories...

...with a mind to develop this in generality for (n-1)-degenerate *n*-categories.

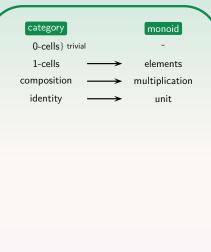
Plan

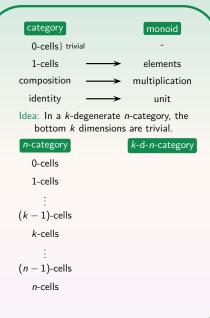
Aim: Describe the 3-fold generalisation of the Eckmann–Hilton argument for 3-degenerate 4-categories...

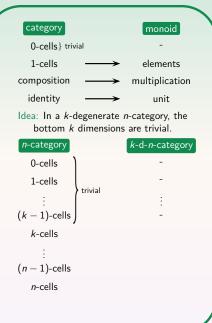
...with a mind to develop this in generality for (n-1)-degenerate *n*-categories.

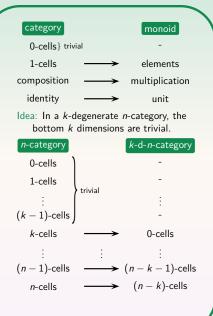
Section *n*: degenerate *n*-categories $(1 \le n \le 4)$

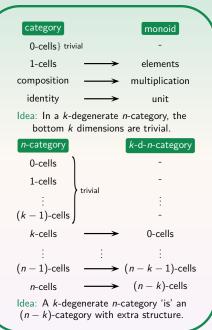
category	monoid
	J

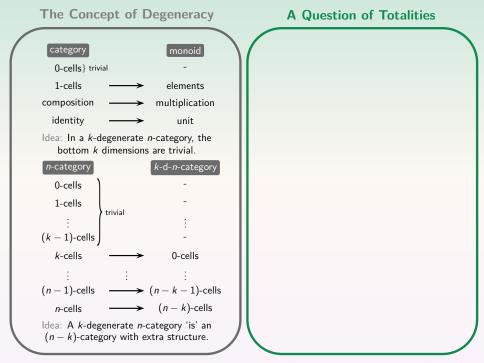


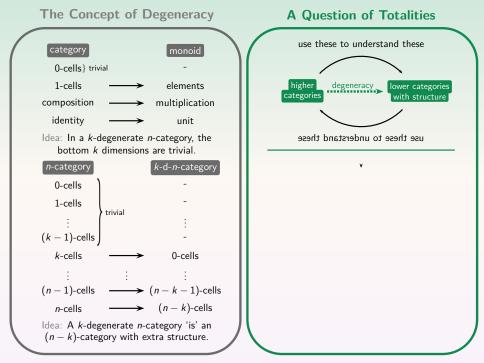


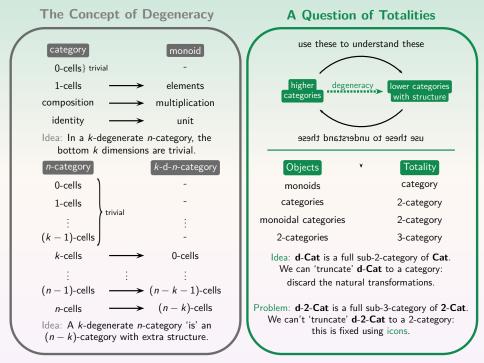


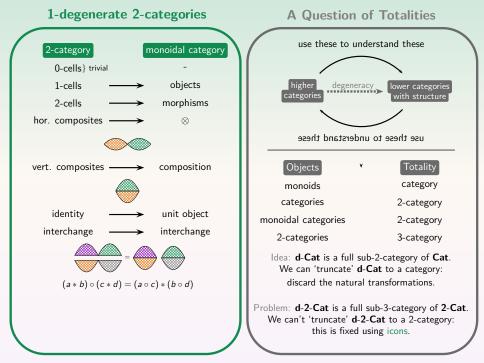




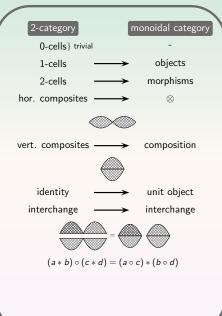




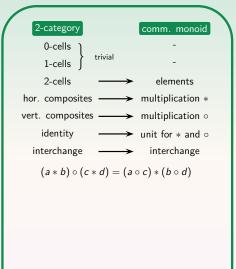




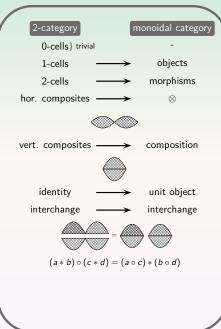
1-degenerate 2-categories



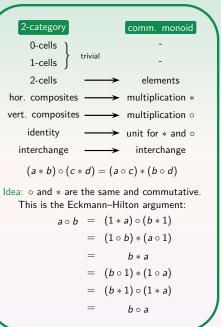
2-degenerate 2-categories

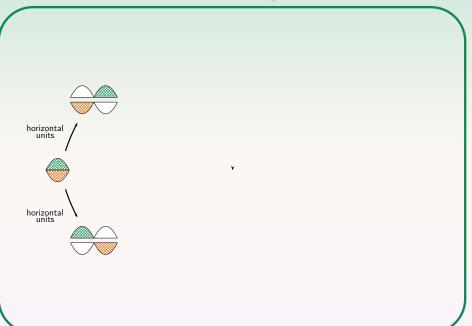


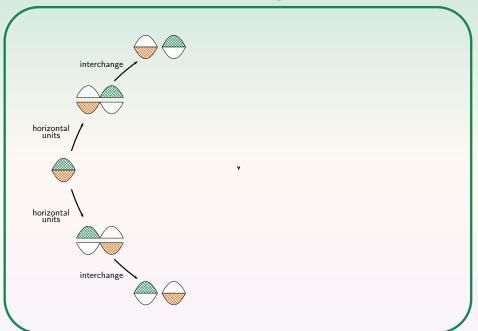
1-degenerate 2-categories

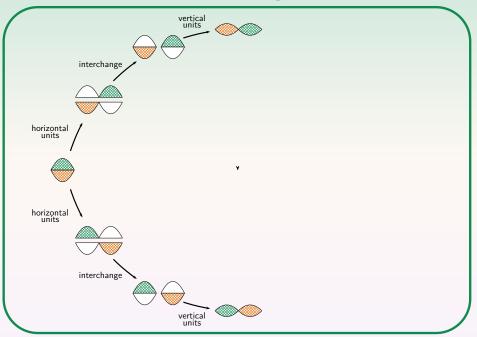


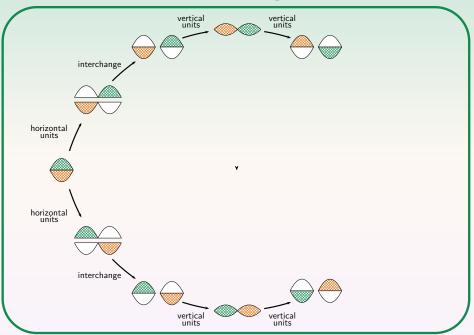
2-degenerate 2-categories

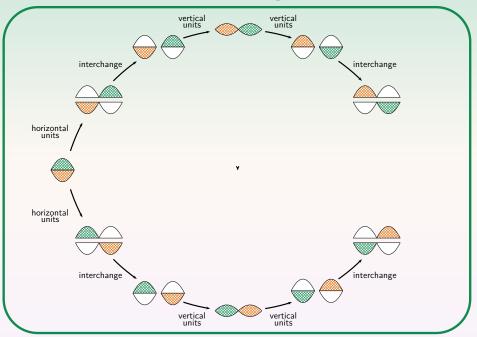


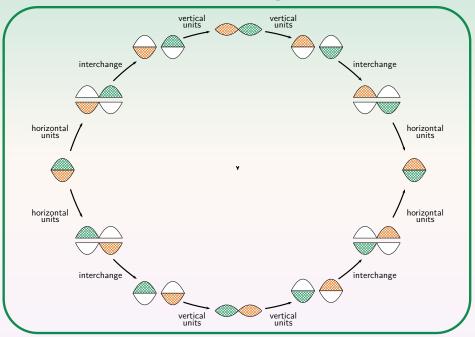


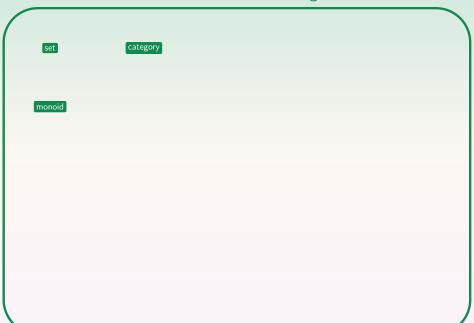


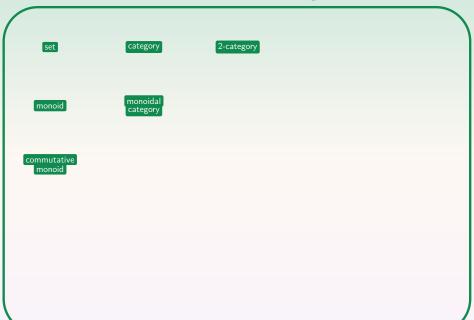




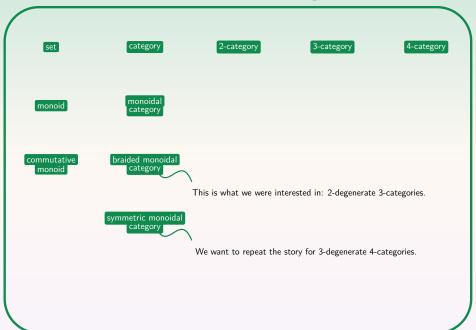








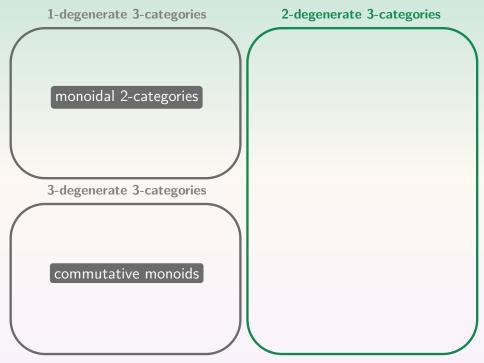
set	Category	2-category	3-category	
monoid	monoidal category			
commutative monoid	braided monoidal category	This is what we were int	erested in: 2-degenerate 3-categories.	

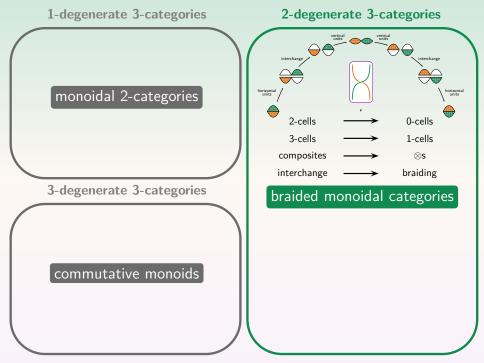


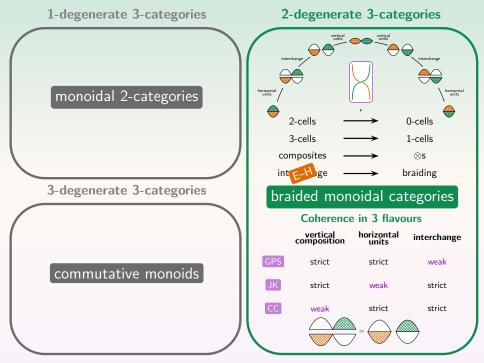
monoidal 2-categories

3-degenerate 3-categories

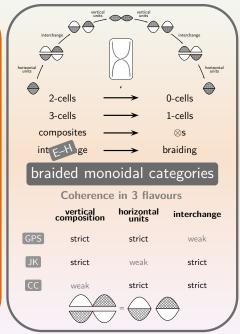
commutative monoids





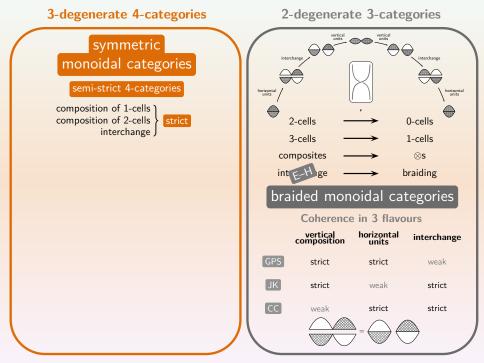


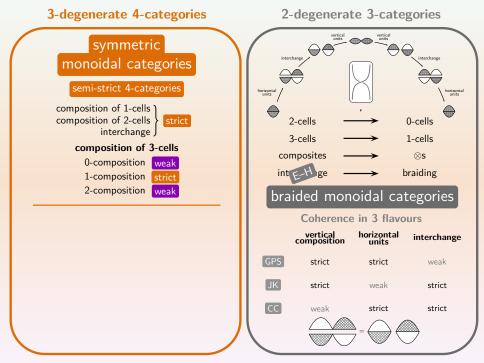
2-degenerate 3-categories

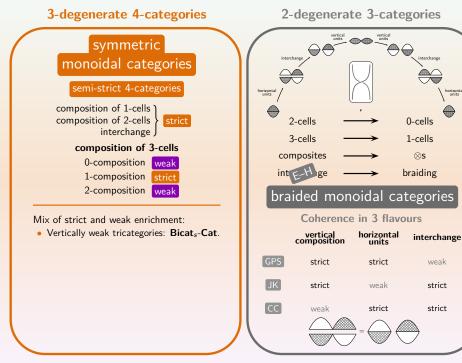


symmetric monoidal categories

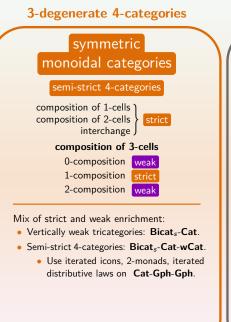
semi-strict 4-categories



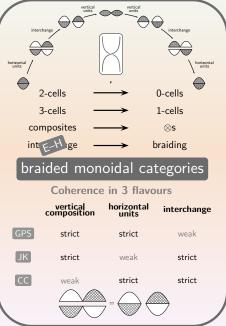


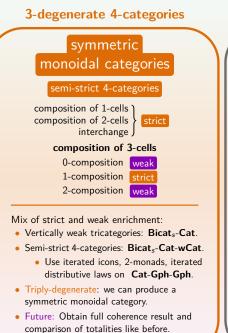


horizontal units

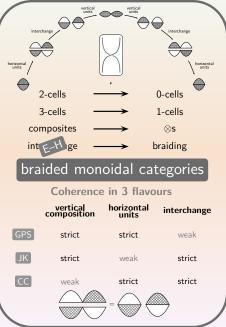


2-degenerate 3-categories

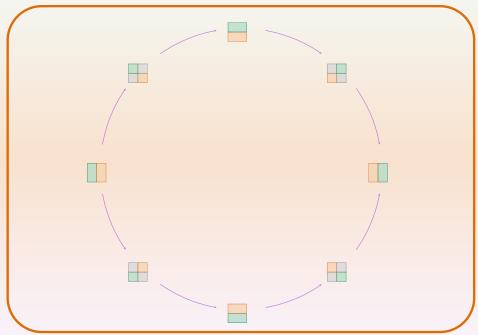


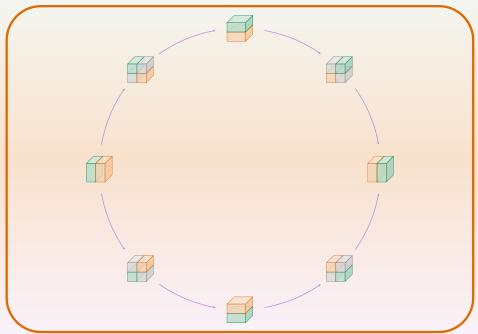


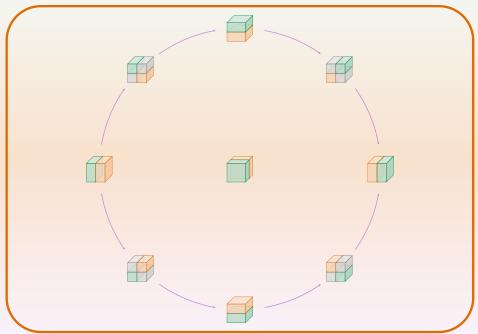
2-degenerate 3-categories

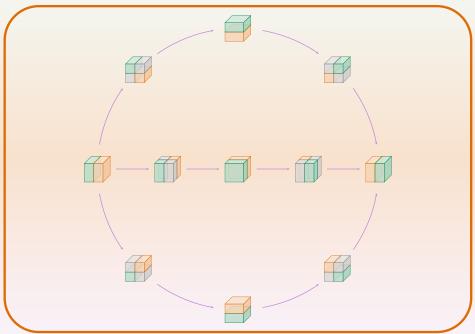


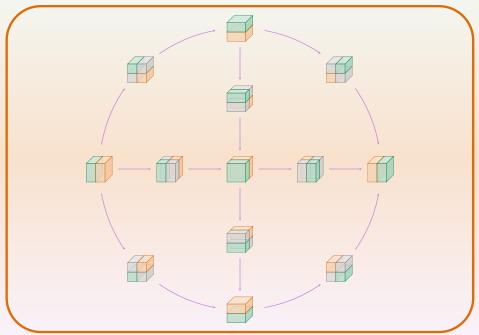
The Eckmann–Hilton Clock

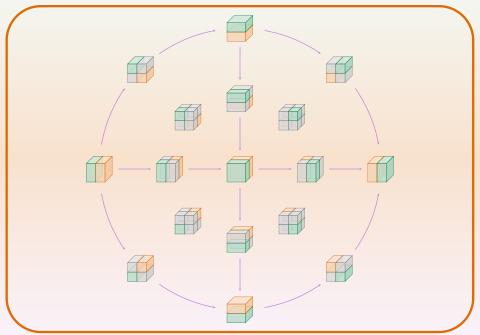


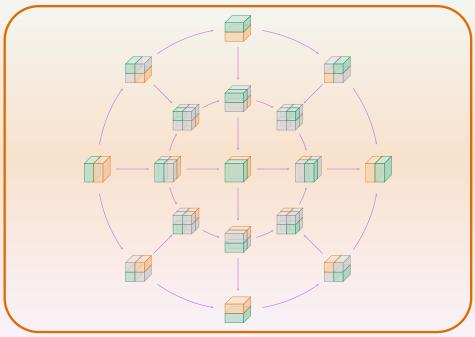




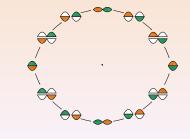


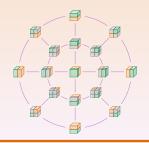






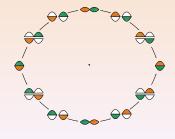
The Eckmann–Hilton argument in the context of degenerate higher categories appears as a heirarchy of results:

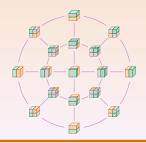




The Eckmann–Hilton argument in the context of degenerate higher categories appears as a heirarchy of results:

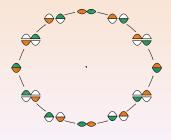
• Let \mathcal{A} be a set with two monoid structures satisfying interchange, then the Eckmann–Hilton argument shows that the two monoid structures are the same and commutative.

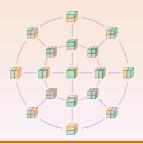




The Eckmann–Hilton argument in the context of degenerate higher categories appears as a heirarchy of results:

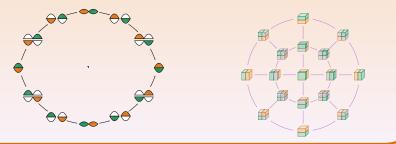
- Let A be a set with two monoid structures satisfying interchange, then the Eckmann–Hilton argument shows that the two monoid structures are the same and commutative.
- Let A be a category with two monoidal structures satisfying interchange, then the *weak* Eckmann–Hilton argument produces a braiding such that the monoidal products are weakly commutative and isomorphic.



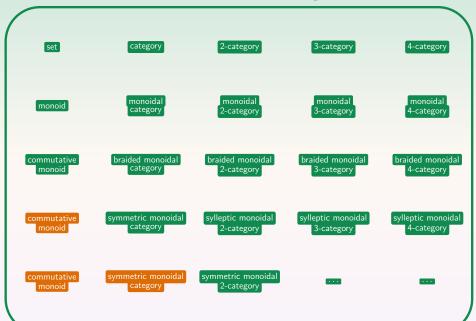


The Eckmann–Hilton argument in the context of degenerate higher categories appears as a heirarchy of results:

- Let A be a set with two monoid structures satisfying interchange, then the Eckmann–Hilton argument shows that the two monoid structures are the same and commutative.
- Let A be a category with two monoidal structures satisfying interchange, then the *weak* Eckmann–Hilton argument produces a braiding such that the monoidal products are weakly commutative and isomorphic.
- With a third monoidal structure on the category A, the Eckmann-Hilton sphere shows that the braiding is in fact a symmetry.



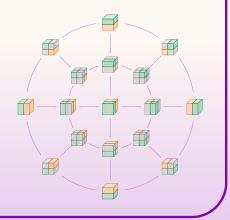
The Periodic Table of n-Categories



Summary

We have a heirarchy of results in progress demonstrating that all of the following produce symmetric monoidal categories:

- 3-tuply monoidal categories: two weak, one strict, strict interchanges
- 3-degenerate 4-categories: produced using iconic constructions
- (n-1)-degenerate *n*-categories: produced using iconic constructions



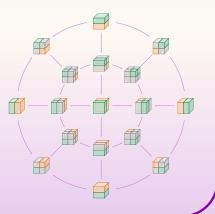
Summary

We have a heirarchy of results in progress demonstrating that all of the following produce symmetric monoidal categories:

- 3-tuply monoidal categories: two weak, one strict, strict interchanges
- 3-degenerate 4-categories: produced using iconic constructions
- (n-1)-degenerate *n*-categories: produced using iconic constructions

Future Work

- Totalities: Do this for triply-degenerate 4categories and (*n*-1)-degenerate *n*-categories.
- Combinatorics: Investigate the interesting structures arising from weak interchange and the Eckmann-Hilton sphere.
- Higher Dimensions: Look at the higher Eckmann-Hilton spheres.



Thank you!

