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argument for 3-degenerate 4-categories...

...with a mind to develop this in generality for
(n − 1)-degenerate n-categories.

Section n: degenerate n-categories (1 ≤ n ≤ 4)
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A Question of Totalities

higher
categories

lower categories
with structure

use these to understand these

usethesetounderstandthese

degeneracy

Objects Totality

monoids category

2-categorycategories
monoidal categories 2-category

2-categories 3-category

Idea: d-Cat is a full sub-2-category of Cat.
We can ‘truncate’ d-Cat to a category:

discard the natural transformations.

Problem: d-2-Cat is a full sub-3-category of 2-Cat.
We can’t ‘truncate’ d-2-Cat to a 2-category:

this is fixed using icons.
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• Triply-degenerate: we can produce a
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• Future: Obtain full coherence result and
comparison of totalities like before.
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The Eckmann–Hilton Arguments

The Eckmann–Hilton argument in the context of degenerate higher categories
appears as a heirarchy of results:

• Let A be a set with two monoid structures satisfying interchange, then
the Eckmann–Hilton argument shows that the two monoid structures are
the same and commutative.

• Let A be a category with two monoidal structures satisfying interchange,
then the weak Eckmann–Hilton argument produces a braiding such that
the monoidal products are weakly commutative and isomorphic.

• With a third monoidal structure on the category A, the Eckmann–Hilton
sphere shows that the braiding is in fact a symmetry.
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Summary

We have a heirarchy of results in progress demonstrating that all of the fol-
lowing produce symmetric monoidal categories:

• 3-tuply monoidal categories: two weak, one strict, strict interchanges
• 3-degenerate 4-categories: produced using iconic constructions
• (n − 1)-degenerate n-categories: produced using iconic constructions

Future Work
• Totalities: Do this for triply-degenerate 4-

categories and (n−1)-degenerate n-categories.
• Combinatorics: Investigate the interesting

structures arising from weak interchange and
the Eckmann–Hilton sphere.

• Higher Dimensions: Look at the higher
Eckmann–Hilton spheres.
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